pyinterp.RTree.window_function#
- RTree.window_function(coordinates: ndarray, radius: float | None = None, k: int = 9, wf: str | None = None, arg: float | None = None, within: bool = True, num_threads: int = 0) tuple[ndarray, ndarray][source]#
Interpolate values using a window function.
The interpolated value will be equal to the expression:
\[\frac{\sum_{i=1}^{k} \omega(d_i,r)x_i} {\sum_{i=1}^{k} \omega(d_i,r)}\]where \(d_i\) is the distance between the point of interest and the \(i\)-th neighbor, \(r\) is the radius of the search, \(x_i\) is the value of the \(i\)-th neighbor, and \(\omega(d_i,r)\) is weight calculated by the window function describe above.
- Parameters:
coordinates – Array of shape
(n, 3)or(n, 2)containing observation coordinates. Here n is the number of observations and each row represents a coordinate in the order x, y, and optionally z. If the matrix shape is(n, 2), the z-coordinate is assumed to be zero. The coordinate system depends on the instance configuration: Ifecef=True, coordinates are in the Cartesian coordinate system (ECEF). Otherwise, coordinates are in the geodetic system (longitude, latitude, altitude) in degrees, degrees, and meters, respectively.radius – The maximum radius of the search (m).
k – The number of nearest neighbors to be used for calculating the interpolated value. Defaults to
9.wf –
The window function, based on the distance the distance between points (\(d\)) and the radius (\(r\)). This parameter can take one of the following values:
blackman: \(w(d) = 0.42659 - 0.49656 \cos( \frac{\pi (d + r)}{r}) + 0.076849 \cos( \frac{2 \pi (d + r)}{r})\)blackman_harris: \(w(d) = 0.35875 - 0.48829 \cos(\frac{\pi (d + r)}{r}) + 0.14128 \cos(\frac{2 \pi (d + r)}{r}) - 0.01168 \cos(\frac{3 \pi (d + r)}{r})\)boxcar: \(w(d) = 1\)flat_top: \(w(d) = 0.21557895 - 0.41663158 \cos(\frac{\pi (d + r)}{r}) + 0.277263158 \cos(\frac{2 \pi (d + r)}{r}) - 0.083578947 \cos(\frac{3 \pi (d + r)}{r}) + 0.006947368 \cos(\frac{4 \pi (d + r)}{r})\)lanczos: \(w(d) = \left\{\begin{array}{ll} sinc(\frac{d}{r}) \times sinc(\frac{d}{arg \times r}), & d \le arg \times r \\ 0, & d \gt arg \times r \end{array} \right\}\)gaussian: \(w(d) = e^{ -\frac{1}{2}\left( \frac{d}{\sigma}\right)^2 }\)hamming: \(w(d) = 0.53836 - 0.46164 \cos(\frac{\pi (d + r)}{r})\)nuttall: \(w(d) = 0.3635819 - 0.4891775 \cos(\frac{\pi (d + r)}{r}) + 0.1365995 \cos(\frac{2 \pi (d + r)}{r})\)parzen: \(w(d) = \left\{ \begin{array}{ll} 1 - 6 \left(\frac{2*d}{2*r}\right)^2 \left(1 - \frac{2*d}{2*r}\right), & d \le \frac{2r + arg}{4} \\ 2\left(1 - \frac{2*d}{2*r}\right)^3 & \frac{2r + arg}{2} \le d \lt \frac{2r +arg}{4} \end{array} \right\}\)parzen_swot: \(w(d) = \left\{\begin{array}{ll} 1 - 6\left(\frac{2 * d}{2 * r}\right)^2 + 6\left(1 - \frac{2 * d}{2 * r}\right), & d \le \frac{2r}{4} \\ 2\left(1 - \frac{2 * d}{2 * r}\right)^3 & \frac{2r}{2} \ge d \gt \frac{2r}{4} \end{array} \right\}\)
arg – The optional argument of the window function. Defaults to
1forlanczos, to0forparzenand for all other functions isNone.within – If true, the method ensures that the neighbors found are located around the point of interest. In other words, this parameter ensures that the calculated values will not be extrapolated. Defaults to
true.num_threads – The number of threads to use for the computation. If 0 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. Defaults to
0.
- Returns:
The interpolated value and the number of neighbors used in the calculation.