Create interpolator objects

In this example, we are going to build the basic objects allowing to carry out interpolations.

Before starting, we will examine the properties of a Cartesian grid and the different classes associated with these objects.

Step-by-step creation of grids

import timeit

import numpy
import pandas

import pyinterp
import pyinterp.backends.xarray
import pyinterp.tests

ds = pyinterp.tests.load_grid3d()
lon, lat, time, tcw = (
    ds['longitude'].values,
    ds['latitude'].values,
    ds['time'].values,
    ds['tcw'].values,
)

This regular 3-dimensional grid is associated with three axes:

  • longitudes,

  • latitudes and

  • time.

To perform the calculations quickly, we will build three objects that will be used by the interpolator to search for the data to be used. Let’s start with the y-axis representing the latitude axis.

y_axis = pyinterp.Axis(lat)
print(y_axis)
<pyinterp.core.Axis>
  min_value: -90
  max_value: 90
  step     : -2.5
  is_circle: false

For example, you can search for the closest point to 0.12 degrees north latitude.

y_axis.find_index([0.12])
array([36])

Then, the x-axis representing the longitudinal axis. In this case, the axis is an axis representing a 360 degree circle.

x_axis = pyinterp.Axis(lon, is_circle=True)
print(x_axis)
<pyinterp.core.Axis>
  min_value: 0
  max_value: 357.5
  step     : 2.5
  is_circle: true

The values -180 and 180 degrees represent the same point on the axis.

print(x_axis.find_index([-180]) == x_axis.find_index([180]))
[ True]

Finally, we create the time axis

t_axis = pyinterp.TemporalAxis(time)
print(t_axis)
<pyinterp.core.TemporalAxis>
  min_value: 2002-07-01T12:00:00.000000000
  max_value: 2002-07-31T12:00:00.000000000
  step     : 86400000000000 nanoseconds

As these objects must communicate in C++ memory space, we use objects specific to the library much faster than other data models and manage the axes representing a circle. For example if we compare these objects to Pandas indexes:

values = lon[10:20] + 1 / 3
index = pandas.Index(lon)
print('pandas.Index: %f' % timeit.timeit('index.searchsorted(values)',
                                         globals={
                                             'index': index,
                                             'values': values
                                         }))
print('pyinterp.Axis %f' % timeit.timeit('x_axis.find_index(values)',
                                         globals={
                                             'x_axis': x_axis,
                                             'values': values
                                         }))
pandas.Index: 0.983544
pyinterp.Axis 0.665903

This time axis is also very efficient compared to the pandas index.

index = pandas.Index(time)
values = time + numpy.timedelta64(1, 'ns')
print('pandas.Index: %f' % timeit.timeit('index.searchsorted(values)',
                                         globals={
                                             'index': index,
                                             'values': values
                                         }))
print('pyinterp.Axis %f' % timeit.timeit('t_axis.find_index(values)',
                                         globals={
                                             't_axis': t_axis,
                                             'values': values
                                         }))
pandas.Index: 14.089318
pyinterp.Axis 4.317738

Before constructing the tensor for pyinterp, we must begin to organize the tensor data so that it is properly stored in memory for pyinterp.

  • The shape of the tensor must be (len(x_axis), len(y_axis), len(t_axis))

Warning

If the array handled is a masked array, the masked values must be set to nan.

Now we can build the object handling the regular 3-dimensional grid.

Note

Grid data are not copied, the Grid3D class just keeps a reference on the handled array. Axis data are copied for non-uniform axes, and only examined for regular axes.

grid_3d = pyinterp.Grid3D(x_axis, y_axis, t_axis, tcw)
print(grid_3d)
<pyinterp.grid.Grid3D>
array([[[10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844],
        [12.08470387,  9.64372637, 12.96766807, ..., 10.47133655,
         12.06850269, 24.25583891],
        [15.77317208, 10.12436132, 11.59731843, ...,  9.53976881,
         11.00327523, 21.59209521],
        ...,
        [ 0.38745328,  0.44010711,  0.65747292, ...,  0.19438924,
          0.57376683,  0.36045132],
        [ 0.39420377,  0.35910122,  0.57106663, ...,  0.18763875,
          0.3739523 ,  0.27269494],
        [ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973]],

       [[10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844],
        [12.19541192,  9.65722735, 12.9460665 , ..., 10.34847761,
         12.54643744, 24.19508449],
        [15.72996894, 10.18511573, 11.41775537, ...,  9.63562578,
         11.89839032, 21.96202211],
        ...,
        [ 0.38340299,  0.43065642,  0.64937233, ...,  0.19573934,
          0.56026585,  0.34695034],
        [ 0.38880338,  0.35505093,  0.56566624, ...,  0.18763875,
          0.36855191,  0.26729454],
        [ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973]],

       [[10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844],
        [12.30611997,  9.67072833, 12.92311483, ..., 10.22561868,
         13.02707239, 24.13433007],
        [15.68946599, 10.24316996, 11.23954241, ...,  9.73283285,
         12.79485551, 22.33194901],
        ...,
        [ 0.37935269,  0.41985564,  0.63992164, ...,  0.19978964,
          0.54406467,  0.33344936],
        [ 0.38475309,  0.34830043,  0.56026585, ...,  0.18763875,
          0.36315151,  0.26324425],
        [ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973]],

       ...,

       [[10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844],
        [11.72422765,  9.73148275, 12.9447164 , ..., 10.88716679,
         11.01542611, 24.1167788 ],
        [15.4585992 , 10.30257428, 11.62972078, ...,  9.36560614,
          9.72743245, 19.62230197],
        ...,
        [ 0.40500456,  0.47250947,  0.71417704, ...,  0.21599081,
          0.62642066,  0.40770475],
        [ 0.40635466,  0.3739523 ,  0.57376683, ...,  0.21329062,
          0.38880338,  0.28889612],
        [ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973]],

       [[10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844],
        [11.84438639,  9.70178059, 12.95281699, ..., 10.74810667,
         11.36645164, 24.16403223],
        [15.56390686, 10.24316996, 11.61892   , ...,  9.42501046,
         10.15406348, 20.27844969],
        ...,
        [ 0.39825407,  0.46170868,  0.69527567, ...,  0.20789022,
          0.60886938,  0.39285367],
        [ 0.40230436,  0.36855191,  0.57376683, ...,  0.20383993,
          0.38475309,  0.28484582],
        [ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973]],

       [[10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844],
        [11.96454513,  9.67342853, 12.96091758, ..., 10.61039666,
         11.71612706, 24.20858547],
        [15.66786442, 10.18241554, 11.60676911, ...,  9.48306468,
         10.5779943 , 20.9345974 ],
        ...,
        [ 0.39285367,  0.45225799,  0.67502419, ...,  0.20248983,
          0.59131811,  0.3766525 ],
        [ 0.39825407,  0.36450161,  0.57376683, ...,  0.19573934,
          0.37800259,  0.27944543],
        [ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973]]])
Axis:
 * x: <pyinterp.core.Axis>
       min_value: 0
       max_value: 357.5
       step     : 2.5
       is_circle: true
 * y: <pyinterp.core.Axis>
       min_value: -90
       max_value: 90
       step     : -2.5
       is_circle: false
 * z: <pyinterp.core.TemporalAxis>
       min_value: 2002-07-01T12:00:00.000000000
       max_value: 2002-07-31T12:00:00.000000000
       step     : 86400000000000 nanoseconds

xarray backend

The construction of these objects manipulating the regular grids can be done more easily using the xarray library and CF convention usually found in NetCDF files.

interpolator = pyinterp.backends.xarray.RegularGridInterpolator(
    pyinterp.tests.load_grid3d().tcw)
print(interpolator.grid)
<pyinterp.backends.xarray.Grid3D>
array([[[ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973],
        [ 0.39420377,  0.35910122,  0.57106663, ...,  0.18763875,
          0.3739523 ,  0.27269494],
        [ 0.38745328,  0.44010711,  0.65747292, ...,  0.19438924,
          0.57376683,  0.36045132],
        ...,
        [15.77317208, 10.12436132, 11.59731843, ...,  9.53976881,
         11.00327523, 21.59209521],
        [12.08470387,  9.64372637, 12.96766807, ..., 10.47133655,
         12.06850269, 24.25583891],
        [10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844]],

       [[ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973],
        [ 0.38880338,  0.35505093,  0.56566624, ...,  0.18763875,
          0.36855191,  0.26729454],
        [ 0.38340299,  0.43065642,  0.64937233, ...,  0.19573934,
          0.56026585,  0.34695034],
        ...,
        [15.72996894, 10.18511573, 11.41775537, ...,  9.63562578,
         11.89839032, 21.96202211],
        [12.19541192,  9.65722735, 12.9460665 , ..., 10.34847761,
         12.54643744, 24.19508449],
        [10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844]],

       [[ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973],
        [ 0.38475309,  0.34830043,  0.56026585, ...,  0.18763875,
          0.36315151,  0.26324425],
        [ 0.37935269,  0.41985564,  0.63992164, ...,  0.19978964,
          0.54406467,  0.33344936],
        ...,
        [15.68946599, 10.24316996, 11.23954241, ...,  9.73283285,
         12.79485551, 22.33194901],
        [12.30611997,  9.67072833, 12.92311483, ..., 10.22561868,
         13.02707239, 24.13433007],
        [10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844]],

       ...,

       [[ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973],
        [ 0.40635466,  0.3739523 ,  0.57376683, ...,  0.21329062,
          0.38880338,  0.28889612],
        [ 0.40500456,  0.47250947,  0.71417704, ...,  0.21599081,
          0.62642066,  0.40770475],
        ...,
        [15.4585992 , 10.30257428, 11.62972078, ...,  9.36560614,
          9.72743245, 19.62230197],
        [11.72422765,  9.73148275, 12.9447164 , ..., 10.88716679,
         11.01542611, 24.1167788 ],
        [10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844]],

       [[ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973],
        [ 0.40230436,  0.36855191,  0.57376683, ...,  0.20383993,
          0.38475309,  0.28484582],
        [ 0.39825407,  0.46170868,  0.69527567, ...,  0.20789022,
          0.60886938,  0.39285367],
        ...,
        [15.56390686, 10.24316996, 11.61892   , ...,  9.42501046,
         10.15406348, 20.27844969],
        [11.84438639,  9.70178059, 12.95281699, ..., 10.74810667,
         11.36645164, 24.16403223],
        [10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844]],

       [[ 0.33344936,  0.28214562,  0.35640102, ...,  0.2227413 ,
          0.23759238,  0.20113973],
        [ 0.39825407,  0.36450161,  0.57376683, ...,  0.19573934,
          0.37800259,  0.27944543],
        [ 0.39285367,  0.45225799,  0.67502419, ...,  0.20248983,
          0.59131811,  0.3766525 ],
        ...,
        [15.66786442, 10.18241554, 11.60676911, ...,  9.48306468,
         10.5779943 , 20.9345974 ],
        [11.96454513,  9.67342853, 12.96091758, ..., 10.61039666,
         11.71612706, 24.20858547],
        [10.15271338, 10.66710078, 11.29219624, ..., 10.60634637,
         15.88388013, 19.57369844]]])
Axis:
 * x: <pyinterp.core.Axis>
       min_value: 0
       max_value: 357.5
       step     : 2.5
       is_circle: true
 * y: <pyinterp.core.Axis>
       min_value: -90
       max_value: 90
       step     : 2.5
       is_circle: false
 * z: <pyinterp.core.TemporalAxis>
       min_value: 2002-07-01T12:00:00.000000000
       max_value: 2002-07-31T12:00:00.000000000
       step     : 86400000000000 nanoseconds

Total running time of the script: (0 minutes 20.138 seconds)

Gallery generated by Sphinx-Gallery