- class pyfes.core.Constituent#
This enum class encapsulates the tidal constituents known by the library.
- __init__(self, value)#
Constructor.
- Parameters:
value – The value of the constituent.
- kMm = <Constituent.kMm: 0>#
\(Mm\)
V
u
Factor-f
\(s - p\)
0
\(f(Mm)\)
Note
Shureman: Table 2, Page 164, Ref. A2
- kMf = <Constituent.kMf: 1>#
\(Mf\)
V
u
Factor-f
\(2s\)
\(-2\xi\)
\(f(Mf)\)
Note
Shureman: Table 2, Page 164, Ref. A6
- kMtm = <Constituent.kMtm: 2>#
\(Mtm\)
V
u
Factor-f
\(3s - p\)
\(-2\xi\)
\(f(Mf)\)
Note
Shureman: Table 2, Page 164, Ref. A7
- kMsqm = <Constituent.kMsqm: 3>#
\(Msqm\)
V
u
Factor-f
\(4s - 2h\)
\(-2\xi\)
\(f(Mf)\)
Note
Shureman: Table 2, Page 164, Ref. A12
- k2Q1 = <Constituent.k2Q1: 4>#
\(2Q_1\)
V
u
Factor-f
\(T - 4s + h + 2p + 90°\)
\(2\xi - \nu\)
\(f(O_1)\)
Note
Shureman: Table 2, Page 164, Ref. A17
- kSigma1 = <Constituent.kSigma1: 5>#
\(\sigma_1\)
V
u
Factor-f
\(T - 4s + 3h + 90°\)
\(2\xi - \nu\)
\(f(O_1)\)
Note
Shureman: Table 2, Page 164, Ref. A20
- kQ1 = <Constituent.kQ1: 6>#
\(Q_1\)
V
u
Factor-f
\(T - 3s + h + p + 90°\)
\(2\xi - \nu\)
\(f(O_1)\)
Note
Shureman: Table 2, Page 164, Ref. A15
- kRho1 = <Constituent.kRho1: 7>#
\(\rho_1\)
V
u
Factor-f
\(T - 3s + 3h - p + 90°\)
\(2\xi - \nu\)
\(f(O_1)\)
Note
Shureman: Table 2, Page 164, Ref. A18
- kO1 = <Constituent.kO1: 8>#
\(O_1\)
V
u
Factor-f
\(T - 2s + h + 90°\)
\(2\xi - \nu\)
\(f(O_1)\)
Note
Shureman: Table 2, Page 164, Ref. A14
- kMP1 = <Constituent.kMP1: 9>#
\(MP_1\)
V
u
Factor-f
\(T - 2s + 3h - 90°\)
\(-\nu\)
\(f(J_1)\)
Note
Shureman: Table 2, Page 164, Ref. A29
- kM11 = <Constituent.kM11: 10>#
\(M_{11}\)
V
u
Factor-f
\(T - s + h + p - 90°\)
\(-\nu\)
\(f(J_1)\)
Note
Shureman: Table 2, Page 164, Ref. A23
- kM12 = <Constituent.kM12: 11>#
\(M_{12}\)
V
u
Factor-f
\(T - s + h - p - 90°\)
\(2\xi - \nu\)
\(f(O_1)\)
Note
Shureman: Table 2, Page 164, Ref. A16
- kM13 = <Constituent.kM13: 12>#
\(M_{13} (=M_{11} + M_{12})\)
V
u
Factor-f
\(T - s + h + p - 90°\)
\(-\nu\)
\(f(M_1)\)
- kChi1 = <Constituent.kChi1: 13>#
\(\chi_1\)
V
u
Factor-f
\(T - s + 3h - p - 90°\)
\(-\nu\)
\(f(J_1)\)
Note
Shureman: Table 2, Page 164, Ref. A27
- kPi1 = <Constituent.kPi1: 14>#
\(\pi_1\)
V
u
Factor-f
\(T - 2h + p1 + 90°\)
0
1
Note
Shureman: Table 2, Page 164, Ref. B15
- kP1 = <Constituent.kP1: 15>#
\(P_1\)
V
u
Factor-f
\(T - h + 90°\)
0
1
Note
Shureman: Table 2, Page 164, Ref. B14
- kS1 = <Constituent.kS1: 16>#
\(S_1\)
V
u
Factor-f
\(T\)
0
1
Note
Shureman: Table 2, Page 164, Ref. B71
- kK1 = <Constituent.kK1: 17>#
\(K_1\)
V
u
Factor-f
\(T + h - 90°\)
\(-\nu\)
\(f(K_1)\)
Note
Shureman: Table 2, Page 165, Ref. Note 2
- kPsi1 = <Constituent.kPsi1: 18>#
\(\psi_1\)
V
u
Factor-f
\(T + 2h - p1 - 90°\)
0
1
Note
Shureman: Table 2, Page 165, Ref. B24
- kPhi1 = <Constituent.kPhi1: 19>#
\(\phi_1\)
V
u
Factor-f
\(T + 3h - 90°\)
0
1
Note
Shureman: Table 2, Page 165, Ref. B31
- kTheta1 = <Constituent.kTheta1: 20>#
\(\theta_1\)
V
u
Factor-f
\(T + s - h + p - 90°\)
\(-\nu\)
\(f(J_1)\)
Note
Shureman: Table 2, Page 164, Ref. A28
- kJ1 = <Constituent.kJ1: 21>#
\(J_1\)
V
u
Factor-f
\(T + s + h - p - 90°\)
\(-\nu\)
\(f(J_1)\)
Note
Shureman: Table 2, Page 164, Ref. A24
- kOO1 = <Constituent.kOO1: 22>#
\(OO_1\)
V
u
Factor-f
\(T + 2s + h - 90°\)
\(-2\xi - \nu\)
\(f(OO_1)\)
Note
Shureman: Table 2, Page 164, Ref. A31
- kMNS2 = <Constituent.kMNS2: 23>#
\(2MNS_2 = M_2 + N_2 + S_2\)
V
u
Factor-f
\(2T - 5s + 4h + p\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
Note
Shureman: Table 2, Page 167, Ref. MNS2
- kEps2 = <Constituent.kEps2: 24>#
\(\varepsilon_2\)
V
u
Factor-f
\(2T - 5s + 4h + p\)
\(2\xi - 2\nu\)
\(f(M_2)\)
- k2N2 = <Constituent.k2N2: 25>#
\(2N_2\)
V
u
Factor-f
\(2T - 4s + 2h + 2p\)
\(+2\xi - 2\nu\)
\(f(M_2)\)
Note
Shureman: Table 2, Page 165, Ref. A42
- kMu2 = <Constituent.kMu2: 26>#
\(\mu_2\)
V
u
Factor-f
\(2T - 4s + 4h\)
\(2\xi - 2\nu\)
\(f(M_2)\)
Note
Shureman: Table 2, Page 165, Ref. A45
- k2MS2 = <Constituent.k2MS2: 27>#
\(2MS_2 = 2M_2 - S_2\)
V
u
Factor-f
\(2T - 4s + 4h\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- kN2 = <Constituent.kN2: 28>#
\(N_2\)
V
u
Factor-f
\(2T - 3s + 2h + p\)
\(2\xi - 2\nu\)
\(f(M_2)\)
Note
Shureman: Table 2, Page 165, Ref. A40
- kNu2 = <Constituent.kNu2: 29>#
\(\nu_2\)
V
u
Factor-f
\(2T - 3s + 4h - p\)
\(2\xi - 2\nu\)
\(f(M_2)\)
Note
Shureman: Table 2, Page 165, Ref. A43
- kM2 = <Constituent.kM2: 30>#
\(M_2\)
V
u
Factor-f
\(2T - 2s + 2h\)
\(2\xi - 2\nu\)
\(f(M_2)\)
Note
Shureman: Table 2, Page 165, Ref. A39
- kMKS2 = <Constituent.kMKS2: 31>#
\(MKS_2 = M_2 + K_2 - S_2\)
V
u
Factor-f
\(2T - 2s + 4h\)
\(2\xi - 2\nu -2\nu^{\prime \prime}\)
\(f(M_2) × f(K_2)\)
- kLambda2 = <Constituent.kLambda2: 32>#
\(\lambda_2\)
V
u
Factor-f
\(2T - s + p + 180°\)
\(2\xi - 2\nu\)
\(f(M_2)\)
Note
Shureman: Table 2, Page 165, Ref. A44
- kL2 = <Constituent.kL2: 33>#
\(L_2\)
V
u
Factor-f
\(2T - s + 2h - p + 180°\)
\(2\xi - 2\nu - R\)
\(f(L_2)\)
Note
Shureman: Table 2, Page 166, Ref. Note 3
- k2MN2 = <Constituent.k2MN2: 34>#
\(2MN_2 = 2M_2 - N_2\)
V
u
Factor-f
\(2T - s + 2h - p + 180°\)
\(2\xi - 2\nu\)
\(f(M_2)^3\)
- kT2 = <Constituent.kT2: 35>#
\(T_2\)
V
u
Factor-f
\(2T - h + p_1\)
0
1
Note
Shureman: Table 2, Page 166, Ref. B40
- kS2 = <Constituent.kS2: 36>#
\(S_2\)
V
u
Factor-f
\(2T\)
0
1
Note
Shureman: Table 2, Page 166, Ref. B39
- kR2 = <Constituent.kR2: 37>#
\(R_2\)
V
u
Factor-f
\(2T + h - p1 + 180°\)
0
1
Note
Shureman: Table 2, Page 166, Ref. B41
- kK2 = <Constituent.kK2: 38>#
\(K_2\)
V
u
Factor-f
\(2T + 2h\)
\(-2\nu^{\prime \prime}\)
\(f(K_2)\)
Note
Shureman: Table 2, Page 166, Ref. Note 4
- kMSN2 = <Constituent.kMSN2: 39>#
\(MSN_2 = M_2 + S_2 - N_2\)
V
u
Factor-f
\(2T + s - p\)
0
\(f(M_2)^2\)
- kEta2 = <Constituent.kEta2: 40>#
\(\eta_2 = KJ_2\)
V
u
Factor-f
\(2T + s + 2h - p\)
\(-2\nu\)
\(f(KJ_2)\)
Note
Shureman: Table 2, Page 166, Ref. A48
- k2SM2 = <Constituent.k2SM2: 41>#
\(2SM_2 = 2S_2 - M_2\)
V
u
Factor-f
\(2T + 2s - 2h\)
\(2\xi + 2\nu\)
\(f(M_2)\)
- kMO3 = <Constituent.kMO3: 42>#
\(MO_3 = M_2 + O_1\)
V
u
Factor-f
\(3T - 4s + 3h + 90°\)
\(4\xi - 3\nu\)
\(f(M_2) × f(O_1)\)
- k2MK3 = <Constituent.k2MK3: 43>#
\(2MK_3 = 2M_2 - K_1\)
V
u
Factor-f
\(3T - 4s + 3h + 90°\)
\(4\xi - 4\nu + \nu^{\prime}\)
\(f(M_2)^2 × f(K_1)\)
- kM3 = <Constituent.kM3: 44>#
\(M_3\)
V
u
Factor-f
\(3T - 3s + 3h\)
\(3\xi - 3\nu\)
\(f(M_3)\)
Note
Shureman: Table 2, Page 166, Ref. A82
- kMK3 = <Constituent.kMK3: 45>#
\(MK_3 = M_2 + K_1\)
V
u
Factor-f
\(3T - 2s + 3h - 90°\)
\(2\xi - 2\nu - \nu^{\prime}\)
\(f(M_2) × f(K_1)\)
- kN4 = <Constituent.kN4: 46>#
\(N_4 = N_2 + N_2\)
V
u
Factor-f
\(4T - 6s + 4h + 2p\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- kMN4 = <Constituent.kMN4: 47>#
\(MN_4 = M_2 + N_2\)
V
u
Factor-f
\(4T - 5s + 4h + p\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- kM4 = <Constituent.kM4: 48>#
\(M_4 = 2M_2\)
V
u
Factor-f
\(4T - 4s + 4h\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- kSN4 = <Constituent.kSN4: 49>#
\(SN_4 = S_2 + N_2\)
V
u
Factor-f
\(4T - 3s + 2h + p\)
\(2\xi - 2\nu\)
\(f(M_2)\)
- kMS4 = <Constituent.kMS4: 50>#
\(MS_4 = M_2 + S_2\)
V
u
Factor-f
\(4T - 2s + 2h\)
\(2\xi - 2\nu\)
\(f(M_2)\)
- kMK4 = <Constituent.kMK4: 51>#
\(MK_4 = M_2 + K_2\)
V
u
Factor-f
\(4T - 2s + 4h\)
\(2\xi - 2\nu - 2\nu^{\prime}\)
\(f(MK_4)\)
- kS4 = <Constituent.kS4: 52>#
\(S_4 = S_2 + S_2\)
V
u
Factor-f
\(4T\)
0
1
- kSK4 = <Constituent.kSK4: 53>#
\(SK_4 = S_2 + K_2\)
V
u
Factor-f
\(4T + 2h\)
\(-2\nu^{\prime \prime}\)
\(f(K_2)\)
- kR4 = <Constituent.kR4: 54>#
\(R_4 = R_2 + R_2\)
V
u
Factor-f
\(4T + 2h - 2p1\)
0
1
- k2MN6 = <Constituent.k2MN6: 55>#
\(2MN_6 = 2M_2 + N_2\)
V
u
Factor-f
\(6T - 7s + 6h + p\)
\(6\xi - 6\nu\)
\(f(M_2)^3\)
- kM6 = <Constituent.kM6: 56>#
\(M_6 = 3M_2\)
V
u
Factor-f
\(6T - 6s + 6h\)
\(6\xi - 6\nu\)
\(f(M_2)^3\)
- kMSN6 = <Constituent.kMSN6: 57>#
\(MSN_6 = M_2 + S_2 + N_2\)
V
u
Factor-f
\(6T - 5s + 4h + p\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- k2MS6 = <Constituent.k2MS6: 58>#
\(2MS_6 = 2M_2 + S_2\)
V
u
Factor-f
\(6T - 4s + 4h\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- k2MK6 = <Constituent.k2MK6: 59>#
\(2MK_6 = 2M_2 + K_2\)
V
u
Factor-f
\(6T - 4s + 6h\)
\(4\xi - 4\nu\)
\(f(M_2)^2\)
- k2SM6 = <Constituent.k2SM6: 60>#
\(2SM_6 = 2S_2 + M_2\)
V
u
Factor-f
\(6T - 2s + 2h\)
\(2\xi - 2\nu\)
\(f(M_2)\)
- kMSK6 = <Constituent.kMSK6: 61>#
\(MSK_6 = M_2 + K_2 + S_2\)
V
u
Factor-f
\(6T - 2s + 4h\)
\(2\xi - 2\nu\)
\(f(M_2) × f(K_2)\)
- kS6 = <Constituent.kS6: 62>#
\(S_6 = 3S_2\)
V
u
Factor-f
\(6T\)
0
1
- kM8 = <Constituent.kM8: 63>#
\(M_8 = 4M_2\)
V
u
Factor-f
\(8T - 8s + 8h\)
\(8\xi - 8\nu\)
\(f(M_2)^4\)
- kMSf = <Constituent.kMSf: 64>#
\(MSf = M_2 - S_2\)
V
u
Factor-f
\(2s - 2h\)
\(2\xi -2\nu\)
\(f(M_2) \prod f(S_2)\)
Warning
Same frequency as \(A_5\)
- kSsa = <Constituent.kSsa: 65>#
\(Ssa\)
V
u
Factor-f
\(2h\)
2
1
Note
Shureman: Table 2, Page 164, Ref. B6
- kSa = <Constituent.kSa: 66>#
\(Sa\)
V
u
Factor-f
\(s\)
0
1
Note
Shureman: Table 2, Page 164, Ref. B64
- kSa1 = <Constituent.kSa1: 67>#
\(Sa_1\)
V
u
Factor-f
\(h - p_1\)
0
1
Note
Shureman: Table 2, Page 164, Ref. B2
- kSta = <Constituent.kSta: 68>#
\(Sta\)
V
u
Factor-f
\(3h - p_1\)
0
1
Note
Shureman: Table 2, Page 164, Ref. B7
- kMm1 = <Constituent.kMm1: 69>#
\(Mm_1\)
V
u
Factor-f
\(s + p + 180\)
\(-2\xi\)
\(f(Mm)\)
Note
Shureman: Table 2, Page 164, Table 2
- kMf1 = <Constituent.kMf1: 70>#
\(Mf_1\)
V
u
Factor-f
\(2s - 2p\)
0
\(f(Mm)\)
- kA5 = <Constituent.kA5: 71>#
\(A_5\)
V
u
Factor-f
\(2s - 2h\)
0
\(f(Mm)\)
Note
Shureman: Table 2, Page 164, Ref. A5
Warning
Same frequency as \(MSf\)
- kM0 = <Constituent.kM0: 72>#
\(M_0\)
V
u
Factor-f
0
0
\(f(Mm)\)
Note
Shureman: Table 2, Page 164, Ref. A1
- kMm2 = <Constituent.kMm2: 73>#
\(Mm_2\)
V
u
Factor-f
\(s - 90°\)
\(-\xi\)
\(f(141)\)
Note
Shureman: Table 2, Page 164, Ref. A64
- kMf2 = <Constituent.kMf2: 74>#
\(Mf_2\)
V
u
Factor-f
\(2s - p - 90°\)
\(-\xi\)
\(f(141)\)
Note
Shureman: Table 2, Page 164, Ref. A65
- property name#
Returns the name of the constituent.
- property value#
Returns the value of the constituent.