class pyfes.core.Constituent#

This enum class encapsulates the tidal constituents known by the library.

__init__(self, value)#

Constructor.

Parameters:

value – The value of the constituent.

kMm = <Constituent.kMm: 0>#

\(Mm\)

V

u

Factor-f

\(s - p\)

0

\(f(Mm)\)

Note

Shureman: Table 2, Page 164, Ref. A2

kMf = <Constituent.kMf: 1>#

\(Mf\)

V

u

Factor-f

\(2s\)

\(-2\xi\)

\(f(Mf)\)

Note

Shureman: Table 2, Page 164, Ref. A6

kMtm = <Constituent.kMtm: 2>#

\(Mtm\)

V

u

Factor-f

\(3s - p\)

\(-2\xi\)

\(f(Mf)\)

Note

Shureman: Table 2, Page 164, Ref. A7

kMsqm = <Constituent.kMsqm: 3>#

\(Msqm\)

V

u

Factor-f

\(4s - 2h\)

\(-2\xi\)

\(f(Mf)\)

Note

Shureman: Table 2, Page 164, Ref. A12

k2Q1 = <Constituent.k2Q1: 4>#

\(2Q_1\)

V

u

Factor-f

\(T - 4s + h + 2p + 90°\)

\(2\xi - \nu\)

\(f(O_1)\)

Note

Shureman: Table 2, Page 164, Ref. A17

kSigma1 = <Constituent.kSigma1: 5>#

\(\sigma_1\)

V

u

Factor-f

\(T - 4s + 3h + 90°\)

\(2\xi - \nu\)

\(f(O_1)\)

Note

Shureman: Table 2, Page 164, Ref. A20

kQ1 = <Constituent.kQ1: 6>#

\(Q_1\)

V

u

Factor-f

\(T - 3s + h + p + 90°\)

\(2\xi - \nu\)

\(f(O_1)\)

Note

Shureman: Table 2, Page 164, Ref. A15

kRho1 = <Constituent.kRho1: 7>#

\(\rho_1\)

V

u

Factor-f

\(T - 3s + 3h - p + 90°\)

\(2\xi - \nu\)

\(f(O_1)\)

Note

Shureman: Table 2, Page 164, Ref. A18

kO1 = <Constituent.kO1: 8>#

\(O_1\)

V

u

Factor-f

\(T - 2s + h + 90°\)

\(2\xi - \nu\)

\(f(O_1)\)

Note

Shureman: Table 2, Page 164, Ref. A14

kMP1 = <Constituent.kMP1: 9>#

\(MP_1\)

V

u

Factor-f

\(T - 2s + 3h - 90°\)

\(-\nu\)

\(f(J_1)\)

Note

Shureman: Table 2, Page 164, Ref. A29

kM11 = <Constituent.kM11: 10>#

\(M_{11}\)

V

u

Factor-f

\(T - s + h + p - 90°\)

\(-\nu\)

\(f(J_1)\)

Note

Shureman: Table 2, Page 164, Ref. A23

kM12 = <Constituent.kM12: 11>#

\(M_{12}\)

V

u

Factor-f

\(T - s + h - p - 90°\)

\(2\xi - \nu\)

\(f(O_1)\)

Note

Shureman: Table 2, Page 164, Ref. A16

kM13 = <Constituent.kM13: 12>#

\(M_{13} (=M_{11} + M_{12})\)

V

u

Factor-f

\(T - s + h + p - 90°\)

\(-\nu\)

\(f(M_1)\)

kChi1 = <Constituent.kChi1: 13>#

\(\chi_1\)

V

u

Factor-f

\(T - s + 3h - p - 90°\)

\(-\nu\)

\(f(J_1)\)

Note

Shureman: Table 2, Page 164, Ref. A27

kPi1 = <Constituent.kPi1: 14>#

\(\pi_1\)

V

u

Factor-f

\(T - 2h + p1 + 90°\)

0

1

Note

Shureman: Table 2, Page 164, Ref. B15

kP1 = <Constituent.kP1: 15>#

\(P_1\)

V

u

Factor-f

\(T - h + 90°\)

0

1

Note

Shureman: Table 2, Page 164, Ref. B14

kS1 = <Constituent.kS1: 16>#

\(S_1\)

V

u

Factor-f

\(T\)

0

1

Note

Shureman: Table 2, Page 164, Ref. B71

kK1 = <Constituent.kK1: 17>#

\(K_1\)

V

u

Factor-f

\(T + h - 90°\)

\(-\nu\)

\(f(K_1)\)

Note

Shureman: Table 2, Page 165, Ref. Note 2

kPsi1 = <Constituent.kPsi1: 18>#

\(\psi_1\)

V

u

Factor-f

\(T + 2h - p1 - 90°\)

0

1

Note

Shureman: Table 2, Page 165, Ref. B24

kPhi1 = <Constituent.kPhi1: 19>#

\(\phi_1\)

V

u

Factor-f

\(T + 3h - 90°\)

0

1

Note

Shureman: Table 2, Page 165, Ref. B31

kTheta1 = <Constituent.kTheta1: 20>#

\(\theta_1\)

V

u

Factor-f

\(T + s - h + p - 90°\)

\(-\nu\)

\(f(J_1)\)

Note

Shureman: Table 2, Page 164, Ref. A28

kJ1 = <Constituent.kJ1: 21>#

\(J_1\)

V

u

Factor-f

\(T + s + h - p - 90°\)

\(-\nu\)

\(f(J_1)\)

Note

Shureman: Table 2, Page 164, Ref. A24

kOO1 = <Constituent.kOO1: 22>#

\(OO_1\)

V

u

Factor-f

\(T + 2s + h - 90°\)

\(-2\xi - \nu\)

\(f(OO_1)\)

Note

Shureman: Table 2, Page 164, Ref. A31

kMNS2 = <Constituent.kMNS2: 23>#

\(2MNS_2 = M_2 + N_2 + S_2\)

V

u

Factor-f

\(2T - 5s + 4h + p\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

Note

Shureman: Table 2, Page 167, Ref. MNS2

kEps2 = <Constituent.kEps2: 24>#

\(\varepsilon_2\)

V

u

Factor-f

\(2T - 5s + 4h + p\)

\(2\xi - 2\nu\)

\(f(M_2)\)

k2N2 = <Constituent.k2N2: 25>#

\(2N_2\)

V

u

Factor-f

\(2T - 4s + 2h + 2p\)

\(+2\xi - 2\nu\)

\(f(M_2)\)

Note

Shureman: Table 2, Page 165, Ref. A42

kMu2 = <Constituent.kMu2: 26>#

\(\mu_2\)

V

u

Factor-f

\(2T - 4s + 4h\)

\(2\xi - 2\nu\)

\(f(M_2)\)

Note

Shureman: Table 2, Page 165, Ref. A45

k2MS2 = <Constituent.k2MS2: 27>#

\(2MS_2 = 2M_2 - S_2\)

V

u

Factor-f

\(2T - 4s + 4h\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

kN2 = <Constituent.kN2: 28>#

\(N_2\)

V

u

Factor-f

\(2T - 3s + 2h + p\)

\(2\xi - 2\nu\)

\(f(M_2)\)

Note

Shureman: Table 2, Page 165, Ref. A40

kNu2 = <Constituent.kNu2: 29>#

\(\nu_2\)

V

u

Factor-f

\(2T - 3s + 4h - p\)

\(2\xi - 2\nu\)

\(f(M_2)\)

Note

Shureman: Table 2, Page 165, Ref. A43

kM2 = <Constituent.kM2: 30>#

\(M_2\)

V

u

Factor-f

\(2T - 2s + 2h\)

\(2\xi - 2\nu\)

\(f(M_2)\)

Note

Shureman: Table 2, Page 165, Ref. A39

kMKS2 = <Constituent.kMKS2: 31>#

\(MKS_2 = M_2 + K_2 - S_2\)

V

u

Factor-f

\(2T - 2s + 4h\)

\(2\xi - 2\nu -2\nu^{\prime \prime}\)

\(f(M_2) × f(K_2)\)

kLambda2 = <Constituent.kLambda2: 32>#

\(\lambda_2\)

V

u

Factor-f

\(2T - s + p + 180°\)

\(2\xi - 2\nu\)

\(f(M_2)\)

Note

Shureman: Table 2, Page 165, Ref. A44

kL2 = <Constituent.kL2: 33>#

\(L_2\)

V

u

Factor-f

\(2T - s + 2h - p + 180°\)

\(2\xi - 2\nu - R\)

\(f(L_2)\)

Note

Shureman: Table 2, Page 166, Ref. Note 3

k2MN2 = <Constituent.k2MN2: 34>#

\(2MN_2 = 2M_2 - N_2\)

V

u

Factor-f

\(2T - s + 2h - p + 180°\)

\(2\xi - 2\nu\)

\(f(M_2)^3\)

kT2 = <Constituent.kT2: 35>#

\(T_2\)

V

u

Factor-f

\(2T - h + p_1\)

0

1

Note

Shureman: Table 2, Page 166, Ref. B40

kS2 = <Constituent.kS2: 36>#

\(S_2\)

V

u

Factor-f

\(2T\)

0

1

Note

Shureman: Table 2, Page 166, Ref. B39

kR2 = <Constituent.kR2: 37>#

\(R_2\)

V

u

Factor-f

\(2T + h - p1 + 180°\)

0

1

Note

Shureman: Table 2, Page 166, Ref. B41

kK2 = <Constituent.kK2: 38>#

\(K_2\)

V

u

Factor-f

\(2T + 2h\)

\(-2\nu^{\prime \prime}\)

\(f(K_2)\)

Note

Shureman: Table 2, Page 166, Ref. Note 4

kMSN2 = <Constituent.kMSN2: 39>#

\(MSN_2 = M_2 + S_2 - N_2\)

V

u

Factor-f

\(2T + s - p\)

0

\(f(M_2)^2\)

kEta2 = <Constituent.kEta2: 40>#

\(\eta_2 = KJ_2\)

V

u

Factor-f

\(2T + s + 2h - p\)

\(-2\nu\)

\(f(KJ_2)\)

Note

Shureman: Table 2, Page 166, Ref. A48

k2SM2 = <Constituent.k2SM2: 41>#

\(2SM_2 = 2S_2 - M_2\)

V

u

Factor-f

\(2T + 2s - 2h\)

\(2\xi + 2\nu\)

\(f(M_2)\)

kMO3 = <Constituent.kMO3: 42>#

\(MO_3 = M_2 + O_1\)

V

u

Factor-f

\(3T - 4s + 3h + 90°\)

\(4\xi - 3\nu\)

\(f(M_2) × f(O_1)\)

k2MK3 = <Constituent.k2MK3: 43>#

\(2MK_3 = 2M_2 - K_1\)

V

u

Factor-f

\(3T - 4s + 3h + 90°\)

\(4\xi - 4\nu + \nu^{\prime}\)

\(f(M_2)^2 × f(K_1)\)

kM3 = <Constituent.kM3: 44>#

\(M_3\)

V

u

Factor-f

\(3T - 3s + 3h\)

\(3\xi - 3\nu\)

\(f(M_3)\)

Note

Shureman: Table 2, Page 166, Ref. A82

kMK3 = <Constituent.kMK3: 45>#

\(MK_3 = M_2 + K_1\)

V

u

Factor-f

\(3T - 2s + 3h - 90°\)

\(2\xi - 2\nu - \nu^{\prime}\)

\(f(M_2) × f(K_1)\)

kN4 = <Constituent.kN4: 46>#

\(N_4 = N_2 + N_2\)

V

u

Factor-f

\(4T - 6s + 4h + 2p\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

kMN4 = <Constituent.kMN4: 47>#

\(MN_4 = M_2 + N_2\)

V

u

Factor-f

\(4T - 5s + 4h + p\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

kM4 = <Constituent.kM4: 48>#

\(M_4 = 2M_2\)

V

u

Factor-f

\(4T - 4s + 4h\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

kSN4 = <Constituent.kSN4: 49>#

\(SN_4 = S_2 + N_2\)

V

u

Factor-f

\(4T - 3s + 2h + p\)

\(2\xi - 2\nu\)

\(f(M_2)\)

kMS4 = <Constituent.kMS4: 50>#

\(MS_4 = M_2 + S_2\)

V

u

Factor-f

\(4T - 2s + 2h\)

\(2\xi - 2\nu\)

\(f(M_2)\)

kMK4 = <Constituent.kMK4: 51>#

\(MK_4 = M_2 + K_2\)

V

u

Factor-f

\(4T - 2s + 4h\)

\(2\xi - 2\nu - 2\nu^{\prime}\)

\(f(MK_4)\)

kS4 = <Constituent.kS4: 52>#

\(S_4 = S_2 + S_2\)

V

u

Factor-f

\(4T\)

0

1

kSK4 = <Constituent.kSK4: 53>#

\(SK_4 = S_2 + K_2\)

V

u

Factor-f

\(4T + 2h\)

\(-2\nu^{\prime \prime}\)

\(f(K_2)\)

kR4 = <Constituent.kR4: 54>#

\(R_4 = R_2 + R_2\)

V

u

Factor-f

\(4T + 2h - 2p1\)

0

1

k2MN6 = <Constituent.k2MN6: 55>#

\(2MN_6 = 2M_2 + N_2\)

V

u

Factor-f

\(6T - 7s + 6h + p\)

\(6\xi - 6\nu\)

\(f(M_2)^3\)

kM6 = <Constituent.kM6: 56>#

\(M_6 = 3M_2\)

V

u

Factor-f

\(6T - 6s + 6h\)

\(6\xi - 6\nu\)

\(f(M_2)^3\)

kMSN6 = <Constituent.kMSN6: 57>#

\(MSN_6 = M_2 + S_2 + N_2\)

V

u

Factor-f

\(6T - 5s + 4h + p\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

k2MS6 = <Constituent.k2MS6: 58>#

\(2MS_6 = 2M_2 + S_2\)

V

u

Factor-f

\(6T - 4s + 4h\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

k2MK6 = <Constituent.k2MK6: 59>#

\(2MK_6 = 2M_2 + K_2\)

V

u

Factor-f

\(6T - 4s + 6h\)

\(4\xi - 4\nu\)

\(f(M_2)^2\)

k2SM6 = <Constituent.k2SM6: 60>#

\(2SM_6 = 2S_2 + M_2\)

V

u

Factor-f

\(6T - 2s + 2h\)

\(2\xi - 2\nu\)

\(f(M_2)\)

kMSK6 = <Constituent.kMSK6: 61>#

\(MSK_6 = M_2 + K_2 + S_2\)

V

u

Factor-f

\(6T - 2s + 4h\)

\(2\xi - 2\nu\)

\(f(M_2) × f(K_2)\)

kS6 = <Constituent.kS6: 62>#

\(S_6 = 3S_2\)

V

u

Factor-f

\(6T\)

0

1

kM8 = <Constituent.kM8: 63>#

\(M_8 = 4M_2\)

V

u

Factor-f

\(8T - 8s + 8h\)

\(8\xi - 8\nu\)

\(f(M_2)^4\)

kMSf = <Constituent.kMSf: 64>#

\(MSf = M_2 - S_2\)

V

u

Factor-f

\(2s - 2h\)

\(2\xi -2\nu\)

\(f(M_2) \prod f(S_2)\)

Warning

Same frequency as \(A_5\)

kSsa = <Constituent.kSsa: 65>#

\(Ssa\)

V

u

Factor-f

\(2h\)

2

1

Note

Shureman: Table 2, Page 164, Ref. B6

kSa = <Constituent.kSa: 66>#

\(Sa\)

V

u

Factor-f

\(s\)

0

1

Note

Shureman: Table 2, Page 164, Ref. B64

kSa1 = <Constituent.kSa1: 67>#

\(Sa_1\)

V

u

Factor-f

\(h - p_1\)

0

1

Note

Shureman: Table 2, Page 164, Ref. B2

kSta = <Constituent.kSta: 68>#

\(Sta\)

V

u

Factor-f

\(3h - p_1\)

0

1

Note

Shureman: Table 2, Page 164, Ref. B7

kMm1 = <Constituent.kMm1: 69>#

\(Mm_1\)

V

u

Factor-f

\(s + p + 180\)

\(-2\xi\)

\(f(Mm)\)

Note

Shureman: Table 2, Page 164, Table 2

kMf1 = <Constituent.kMf1: 70>#

\(Mf_1\)

V

u

Factor-f

\(2s - 2p\)

0

\(f(Mm)\)

kA5 = <Constituent.kA5: 71>#

\(A_5\)

V

u

Factor-f

\(2s - 2h\)

0

\(f(Mm)\)

Note

Shureman: Table 2, Page 164, Ref. A5

Warning

Same frequency as \(MSf\)

kM0 = <Constituent.kM0: 72>#

\(M_0\)

V

u

Factor-f

0

0

\(f(Mm)\)

Note

Shureman: Table 2, Page 164, Ref. A1

kMm2 = <Constituent.kMm2: 73>#

\(Mm_2\)

V

u

Factor-f

\(s - 90°\)

\(-\xi\)

\(f(141)\)

Note

Shureman: Table 2, Page 164, Ref. A64

kMf2 = <Constituent.kMf2: 74>#

\(Mf_2\)

V

u

Factor-f

\(2s - p - 90°\)

\(-\xi\)

\(f(141)\)

Note

Shureman: Table 2, Page 164, Ref. A65

property name#

Returns the name of the constituent.

property value#

Returns the value of the constituent.