pyinterp.Histogram2DFloat64.quantile#
- Histogram2DFloat64.quantile(self, q: float) numpy.ndarray[dtype=float64, shape=(*, *), order='F']#
Compute the specified quantile for each bin.
Uses the TDigest algorithm to estimate quantiles with high accuracy, particularly at the tails of the distribution.
- Parameters:
q – Quantile to compute, in the range [0, 1]. For example: - 0.0 returns the minimum - 0.25 returns the 25th percentile (Q1) - 0.5 returns the median - 0.75 returns the 75th percentile (Q3) - 1.0 returns the maximum
- Returns:
2D array containing the quantile value for each bin. Bins with no data return NaN.
- Raises:
ValueError – If q is not in the range [0, 1].
Examples
>>> hist = pyinterp.Histogram2D(x_axis, y_axis) >>> hist.push(x_data, y_data, z_data)
Compute various percentiles
>>> min_grid = hist.quantile(0.0) >>> q1_grid = hist.quantile(0.25) >>> median_grid = hist.quantile(0.5) >>> q3_grid = hist.quantile(0.75) >>> max_grid = hist.quantile(1.0)
Compute 95th percentile
>>> p95 = hist.quantile(0.95)