Guillaume Eynard-Bontemps and Emmanuelle Sarrazin, CNES (Centre National d’Etudes Spatiales - French Space Agency)
2024-01
Matlab (and equivalent Scilab)
What is the most used language (in Data Science)?
Answer link Key: ay
Nearly every scientist working in Python draws on the power of NumPy
# The standard way to import NumPy:
import numpy as np
# Create a 2-D array, set every second element in
# some rows and find max per row:
x = np.arange(15, dtype=np.int64).reshape(3, 5)
x[1:, ::2] = -99
x
array([[ 0, 1, 2, 3, 4],
[-99, 6, -99, 8, -99],
[-99, 11, -99, 13, -99]])
x.max(axis=1)
array([ 4, 8, 13])
# Generate normally distributed random numbers:
rng = np.random.default_rng()
samples = rng.normal(size=2500)
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
rng = np.random.default_rng()
xi = 0.1*np.arange(1,11)
yi = 5.0*np.exp(-xi) + 2.0*xi
zi = yi + 0.05 * np.max(yi) * rng.standard_normal(len(yi))
A = np.concatenate((np.exp(-xi)[:, np.newaxis], xi[:, np.newaxis]),axis=1)
c, resid, rank, sigma = linalg.lstsq(A, zi)
xi2 = np.arange(0.1,1.01,0.01)
yi2 = c[0]*np.exp(-xi2) + c[1]*xi2
Which tools allows manipulating tabular data?
Answer link Key: qa
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
# A StrMethodFormatter is used automatically
ax.zaxis.set_major_formatter('{x:.02f}')
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
Which is the best Deep Learning library in Python?
Answer link Key: ca
Difference between Conda and Pip according to Anaconda.
conda | pip | |
---|---|---|
manages | binaries | wheel or source |
can require compilers | no | yes |
package types | any | Python-only |
create environment | yes, built-in | no, requires virtualenv or venv |
dependency checks | yes | no |
Turn a Git repo into a collection of interactive notebooks
Follow this first tutorial at least till chapter 6.
See the instruction to run the notebooks locally here If you have time, go through part “The predictive modeling pipeline” with notebooks 01 to 03. You can use the online book